FEATURED RESEARCH

 

Featured Research By Shrikant Kukreti

G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation

Nishu Nain, Anju Singh, Shoaib Khan, Shrikant Kukreti

  Abstract

The dopamine transporter gene (DAT1), a recognized genetic risk factor for attention deficit hyperactivity disorder (ADHD) is principally responsible for the regulation of dopamine synaptic levels and serves as a key target in many psychostimulants drugs. DAT1 gene methylation has been considered an epigenetic marker in ADHD. The identification of G-rich sequence motifs potential to form G-quadruplexes is correlated with functionally important genomic regions. Herein, biophysical and biochemical techniques are employed to investigate the structural polymorphism along with the effect of cytosine methylation on a 26-nt G-rich sequence present in the promoter region of the DAT1 gene. The gel electrophoresis, circular dichroism spectroscopy, and UV-thermal melting data are well correlated and conclude the formation of a parallel (bimolecular), as well as antiparallel (tetramolecular) G-quadruplex in Na+ solution. Interestingly, the existence of uni-, bi-, tri-, and tetramolecular quadruplex structures in K+ solution exhibited only the parallel type G-quadruplex. The results demonstrate that in presence of either cation (Na+ or K+) the cytosine methylation reserved the structural topologies unaltered. However, methylation lowers the thermal stability of G-quadruplexes and the duplex structures, as well. These findings provide insights to understand the regulatory mechanisms underlying the formation of the G-quadruplex structure induced by DNA methylation. 

Biochemistry and Biophysics Reports 34, 2023, 101464 Read  More

 

 

Alkali cation-mediated topology displayed by an exonic G-rich sequence of TRPA1 gene

Shoaib Khan, Anju Singh, Nishu Nain, Shrikant Kukreti

  Abstract

G-rich sequences are intrinsic parts of the genome, widespread in promoters, telomeres, or other regulatory regions. The in vivo existence and biological significance have established the functional aspect of G-quadruplex structures and thus have developed immense interest in exploring their therapeutic aspects. Herein, using biophysical methods, we examined the structural status and comprehensive cation-dependence of a 17-bp G-rich genomic sequence (SKGT17) located in the coding region of the human TRPA1 gene, known to be associated with various neurovascular, cardiovascular, and respiratory conditions. TRPA1 is primarily seen as a therapeutic target for the development of novel analgesics. Bioinformatics analysis has suggested that 17-bp quadruplex motif is a binding site for transcription factor ‘Sp1’. The formation and recognition of SKGT17 G-quadruplex might impact its regulatory functioning. Biophysical studies confirmed that the presence of alkali metal ions facilitated the formation of G-quadruplex in parallel topology. Native gel further substantiated the formation of a biomolecular species. Circular dichroism (CD), UV-thermal melting (Tm), and CD melting confirmed the formation of parallel G-quadruplex with metal ion-dependent stability. The stability of the G-quadruplex formed is found to be significantly high in the presence of K+ ions than that of other ions. Intriguingly, we have also established that this segment of the TRAP1 gene favors G-quadruplex formation over its participation in the corresponding duplex formation under K+ ions conditions. This study attempts to explain the rationale for the stabilization of G-quadruplex in the presence of alkali metal ions and may add to a better understanding and insights into DNA-metal ions interactions.

J Biomol Struct Dyn, 2023, 41(19) 9997-10008

A novel G·G·T non-conventional intramolecular triplex formed by the double repeat sequence of Chlamydomonas telomeric DNA

Aparna Bansal, Priyanka Phogat, Shrikant Kukreti

  Abstract

Competition among DNA non-canonical structures has been widely studied in repetitive DNA sequences. The factors affecting DNA structural polymorphism have always been an important area of research. The Chlamydomonas reinhardtii telomere (TTTTAGGG)n is found to be an exception to the general idea of forming a folded G-quadruplex by a few repeats in any telomeric sequence. Herein, using gel electrophoresis, UV thermal melting, UV thermal difference spectra (TDS), circular dichroism, and fluorescence and NMR spectroscopy. We demonstrated that the double repeat of the C. reinhardtii telomere (TTTTAGGG)2 (Chlm2) adopts an intramolecular non-conventional triplex structure in Na+ solution. We report that the co-existence of reverse Hoogsteen (G·G) and Wobble base pairing (G·T) stabilizes the triplex structure. To the best of our knowledge, such a non-conventional triplex structure formed by any telomeric sequence has not been reported to date.

RSC Adv., 2022,12, 15918-15924

Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes

Anju Singh, Ritushree Kukreti, Luciano Saso, Shrikant Kukreti

  Abstract

Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.

Molecules 2022, 27(3), 950;  Read More

Structural switching/polymorphism by sequential base substitution at quasi-palindromic SNP site (G → A) in LCR of human β-globin gene cluster

Nishu Nain, Anju Singh, Shoaib Khan, Mahima Kaushik, Shrikant Kukreti

  Abstract

The human β-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression contains five tissue-specific DNase I-hypersensitive sites (HSs). A single nucleotide polymorphism (SNP) (A → G) present in HS4 region of locus control region (LCR), have shown a notable association between the G allele and the occurrence of β-thalassemia. This SNP site exhibiting a hairpin – duplex equilibrium manifested in A → B like DNA transition has previously been reported from this laboratory. Since, DNA is a dynamic and adaptable molecule, so any change of a single base within a primary DNA sequence can produce major biological consequences commonly manifested in genetic disorders such as sickle cell anemia and β-thalassemia. Herein, the differential behavior of sequential single base substitutions G → A on the quasi-palindromic sequence (d-TGGGGGCCCCA; HPG11) has been explored. A combination of native gel electrophoresis, circular dichroism (CD), and UV-thermal denaturation (Tm) techniques have been used to investigate the structural polymorphism associated with various variants of HPG11 i.e. HPG11A2 to HPG11A5. The CD spectra confirmed that all the HPG11 variants exhibit a hairpin – duplex equilibrium. Oligomer concentration dependence on CD spectra has been correlated with A → B DNA conformational transition. However, as revealed in gel electrophoresis, HPG11A2 → A5 exhibit the formation of a tetramolecular structure (four-way junction) at higher oligomer concentration. UV-melting studies also supported the melting of hairpin, duplex and four-way junction structure. This polymorphism pattern may possibly be significant for DNA-protein recognition, in the process of regulation of LCR in the β-globin gene.

International Journal of Biological Macromolecules 201, 2022, 216-225

 

Sequence-specific recognition of a coding segment of human DACH1 gene via short pyrimidine/purine oligonucleotides

Shoaib Khan, Anju Singh, Nishu Nain, Srishty Gulati, Shrikant Kukreti

  Abstract

With growing in vivo evidence of the roles of triplexes in biological processes, oligonucleotide-directed targeting of double-helical DNA for selective modulation of gene functions has become imperative in their therapeutic aspects. This study comprises a comparative investigation of 17-mer Py- and Pu-TFO for the formation of an intermolecular triplex with a 27-bp genomic homopurine–homopyrimidine track present in the transcriptional element of the human DACH1 gene. The biochemical and biophysical studies have revealed that triplex formation takes place only with Py-TFO and not with its Pu-counterpart. Non-denaturating gel electrophoresis indicated the formation of an intermolecular triplex in Py-motif with an increasing amount of Py-TFO, whereas no such interaction was observed for the Pu-counterpart. UV-thermal melting (Tm), circular dichroism (CD) and thermal difference spectra (TDS) studies confirmed the pyrimidine motif triplex formation, which was observed to be significantly pH-dependent and stable at acidic pH (5.2) in the presence of 100 mM Na+ ions. Contrarily, Pu-TFO was not found to bind to the target predominantly, owing to its self-association properties. Further studies have revealed that the GA-rich Pu-TFO adopts a homoduplex structure leading to a limit in its availability for triplex formation. These results may add to our understanding of sequence-specific gene targeting and give insight into designing more specific TFOs depending on genomic targets.

RSC Adv. 2021,11, 40011-40021

Formation of a DNA triple helical structure at BOLF1 gene of human herpesvirus 4 (HH4) genome

Shikha Kaushik, Shrikant Kukreti

  Abstract

Eukaryotic genomes contain a large number of pyrimidine-purine rich regions and such regions can assume varied DNA conformations, including triple-stranded structures. These structures have fascinated scientists because of their considerable therapeutic applications. These structures have also profound implications in the field of nanotechnology as they can be used to develop DNA-based nanostructures and materials. Therefore, for any application, it is important to understand the formation of triplex structures, both in quantitative and qualitative terms. A combination of gel electrophoresis, UV-thermal denaturation and circular dichroism (CD) spectroscopy was used to investigate the formation of inter- as well as intramolecular triplex, in pyrimidine motif at BOLF1 gene of human herpesvirus 4 (HH4) genome. This gene codes for inner tegument protein, which plays crucial roles in viral replication. The said oligopurine•oligopyrimidine duplex was targeted via a designed triple helix forming oligopyrimidine nucleotide (TFO) in intermolecular as well as intramolecular fashion. Our studies revealed that intramolecular triplex formation takes place at acidic as well as at neutral pH; whereas low pH is required for its intermolecular version. This comparative study between inter- and intramolecular triplex allowed us to demonstrate that intramolecular structure is more stable to its intermolecular counterpart. Numerous models for mono-, bi- and trimolecular structures adopted by these DNA sequences have been suggested. This report adds to our existing knowledge about DNA triple helical structures.

Journal of Biomolecular Structure and Dynamics 2021, 39 (9) 3324-3335

Cationic porphyrins as destabilizer of a G-quadruplex located at the promoter of human MYH7 β gene

Anju Singh, Savita Joshi, Shrikant Kukreti

  Abstract

G-quadruplex (GQ) architecture is adopted by guanine rich sequences, present throughout the eukaryotic genome including promoter locations and telomeric ends. The in vivo presence indicates their involvement and role in various biological processes. Various small ligands have been developed to interact and stabilize/destabilize G-quadruplex structures. Cationic porphyrins are among the most studied ligands, reported to bind and stabilize G-quadruplexes. Herein, we report the recognition and destabilization of a parallel G-quadruplex by porphyrins (TMPyP3 and TMPyP4). This G-quadruplex forming 23-nt G-rich sequence is in the promoter region of Human Myosin Heavy Chain β gene (MYH7β). Presence of various putative regulatory sequence elements (TATA Box, CCAAT, SP-1) located in the vicinity of this quadruplex motif, highlight its regulatory implications. Biophysical methods as Circular Dichroism Spectroscopy, UV-Absorption Spectroscopy, UV-Thermal Denaturation and Fluorescence Spectroscopy (steady as well as Time Resolved) have been used for studying the interaction and binding parameters. It is proposed that porphyrins have a destabilizing effect on the G-quadruplexes with parallel topology and a stronger binding specifically via intercalation mode is needed to cause destabilization. The study deals with better understanding and insights of DNA-Drug interactions in biological systems.

Journal of Biomolecular Structure and Dynamics 2020, 38 (16) 4801-4816

Oxidative Stress: A Key Modulator in Neurodegenerative Diseases (Highly Cited Review Article)

Anju Singh, Ritushree Kukreti, Luciano Saso, ShrikantKukreti

  Abstract

Oxidative stress is proposed as a regulatory element in ageing and various neurological disorders. The excess of oxidants causes a reduction of antioxidants, which in turn produce an oxidation–reduction imbalance in organisms. Paucity of the antioxidant system generates oxidative-stress, characterized by elevated levels of reactive species (oxygen, hydroxyl free radical, and so on). Mitochondria play a key role in ATP supply to cells via oxidative phosphorylation, as well as synthesis of essential biological molecules. Various redox reactions catalyzed by enzymes take place in the oxidative phosphorylation process. An inefficient oxidative phosphorylation may generate reactive oxygen species (ROS), leading to mitochondrial dysfunction. Mitochondrial redox metabolism, phospholipid metabolism, and proteolytic pathways are found to be the major and potential source of free radicals. A lower concentration of ROS is essential for normal cellular signaling, whereas the higher concentration and long-time exposure of ROS cause damage to cellular macromolecules such as DNA, lipids and proteins, ultimately resulting in necrosis and apoptotic cell death. Normal and proper functioning of the central nervous system (CNS) is entirely dependent on the chemical integrity of brain. It is well established that the brain consumes a large amount of oxygen and is highly rich in lipid content, becoming prone to oxidative stress. A high consumption of oxygen leads to excessive production of ROS. Apart from this, the neuronal membranes are found to be rich in polyunsaturated fatty acids, which are highly susceptible to ROS. Various neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), among others, can be the result of biochemical alteration (due to oxidative stress) in bimolecular components. There is a need to understand the processes and role of oxidative stress in neurodegenerative diseases. This review is an effort towards improving our understanding of the pivotal role played by OS in neurodegenerative disorders.

Molecules 2019, 24(8), 1583 Read More

Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations

Anju Singh, Ritushree Kukreti, Luciano Saso, Shrikant Kukreti

  Abstract

Over the decades, oxidative stress has emerged as a major concern to biological researchers. It is involved in the pathogenesis of various lifestyle-related diseases such as hypertension, diabetes, atherosclerosis, and neurodegenerative diseases. The connection between oxidative stress and telomere shortening via oxidative guanine lesion is well documented. Telomeres are confined to guanine rich ends of chromosomes. Owing to its self-association properties, it adopts G-quadruplex structures and hampers the overexpression of telomerase in the cancer cells. Guanine, being the most oxidation prone nucleobase, when structured in G-quadruplex entity, is found to respond peculiarly towards oxidative stress. Interestingly, this non-Watson–Crick structural feature exists abundantly in promoters of various oncogenes, exons and other genomic locations. The involvement of G-quadruplex architecture in oncogene promoters is well recognized in gene regulation processes. Development of small molecules aimed to target G-quadruplex structures, have found to alter the overexpression of oncogenes. The interaction may lead to the obstruction of diseased cell having elevated level of reactive oxygen species (ROS). Thus, presence of short guanine tracts (Gn) forming G-quadruplexes suggests its critical role in oxidative genome damage. Present review is a modest attempt to gain insight on the association of oxidative stress and G-quadruplexes, in various biological processes.

Int. J. Mol. Sci. 2019, 20(17), 4258 Read More

Unusual stability exhibited by (AT)XN12(AT)Y motif associated with high fetal hemoglobin levels

Kapil Roy, Swati Mahendru, Ritushree Kukreti, Shrikant Kukreti

  Abstract

Quasi-palindromic sequences (AT)XN12(AT)Y present in HS2 (hypersensitive site 2) of the human β-globin locus are known to be significantly associated with increased fetal hemoglobin (HbF) levels. High HbF levels in some adults arise due to pathological conditions such as sickle cell disease and β-thalassemia. However, elevated levels of HbF are also associated with a reducing morbidity and mortality in patients with β-thalassemia and thus ameliorate the severity of the disease. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, and circular dichroism (CD) techniques, we demonstrated that it exhibits a hairpin-duplex equilibrium. Intramolecular species (hairpin) were observed in both low and high salt concentrations in gel assay studies displaying the unusual stability of intramolecular species even at the high counter-ion concentration. The unusual stability of hairpin secondary structures was also demonstrated by the monophasic nature of the melting profiles for the oligonucleotides which persisted at low as well as high salt and oligomer concentrations. Change in CD spectra as a function of oligomer concentration indicates that the bimolecular duplex formation is selectively favored over monomolecular hairpin formation at and above 9 µM oligomer concentration. Thus, we hypothesize that imperfect inverted repeat sequence (AT)XN12(AT)Y of HS2 of β-globin gene LCR forms the unusually stable hairpins which may result in the formation of a cruciform structure that may be recruited for binding by various nuclear proteins that could result in elevated HbF levels.

Journal of Biomolecular Structure and Dynamics 2019, 37 (14) 3848-3857

 

Homoduplex to i-motif structural switch exhibited by a cytosine rich strand of the MYH7 heavy chain β gene promoter at physiological pH

Anju Singh, Shrikant Kukreti

  Abstract

Genomic locations such as promoter, exon, intron, telomeric and non-telomeric regions are rich in GC-rich sequences with the potential to form G- and C-tetraplexes on both strands independently. Herein, we employed biophysical and biochemical methods to study a 34-mer C-rich DNA sequence of the myosin heavy chain β gene (MYH7β) promoter, namely HM34C for humans and the rabbit counterpart, RM34C, which differs from HM34C at three positions (three bases). Circular dichroism (CD), UV-thermal denaturation and native gel electrophoresis studies demonstrated that both the C-rich promoter segments form C-tetraplex (i-motif) structures. The CD studies revealed that HM34C forms the i-motif structure at acidic pH (5.2) in the presence of 0.1 M NaCl but remains unstructured at physiological pH. Interestingly, RM34C can form the stable i-motif structure in acidic as well as physiological pH. A shift in the positive peak from 280 nm to 275 nm with the increase in temperature from 4 °C to 30 °C was observed in temperature-dependent CD studies. UV-melting studies showed a biphasic transition for RM34C, indicating the existence of two structural species at neutral pH. In view of these findings we suggest that at physiological pH, the RM34C sequence exists in equilibrium between two structural motifs, i.e. the i-motif and homoduplex structure. This study may add to the understanding of the i-motif/homoduplex in equilibrium in physiological environments

RSC Adv., 2018,8, 34202-34214

A triple stranded G-quadruplex formation in the promoter region of human myosin β (MYH7) gene

Anju Singh, Shrikant Kukreti

  Abstract

Regulatory regions in human genome, enriched in guanine-rich DNA sequences have the propensity to fold into G-quadruplex structures. On exploring the genome for search of G-tracts, it was interesting to find that promoter of Human Myosin Gene (MYH7) contains a conserved 23-mer G-rich sequence (HM-23). Mutations in this gene are associated with familial cardiomyopathy. Enrichment of MYH7 gene in G-rich sequences could possibly play a critical role in its regulation. We used polyacrylamide gel electrophoresis (PAGE), UV-Thermal denaturation (UV-Tm) and Circular Dichroism (CD), to demonstrate the formation of a G-quadruplex by 23-mer G-rich sequence HM23 in promoter location of MYH7 gene. We observed that the wild G-rich sequence HM23 containing consecutive G5 stretch in two stacks adopt G-quadruplexes of diverse molecularity by involvement of four-strand, three-strand and two-strands with same parallel topology. Interestingly, the mutated sequence in the absence of continuous G5 stretch obstructs the formation of three-stranded G-quadruplex. We demonstrated that continuous G5 stretch is mandatory for the formation of a unique three-stranded G-quadruplex. Presence of various transcription factors (TF) in vicinity of the sequence HM23 leave fair possibility of recognition by TF binding sites, and so modulate gene expression. These findings may add on our understanding about the effect of base change in the formation of varied structural species in similar solution condition. This study may give insight about structural polymorphism arising due to recognition of non-Watson-Crick G-quadruplex structures by cellular proteins and designing structure specific molecules.

Journal of Biomolecular Structure and Dynamics, 2018 36 (11) 2773–2786 Read More

A topological transition from bimolecular quadruplex to G-triplex/tri-G-quadruplex exhibited by truncated double repeats of human telomere

Mohan Kumar, Mahima Kaushik, Shrikant Kukreti

  Abstract

Human telomeric G-rich sequences can fold back into various conformations depending upon the salt (Na+ or K+) at physiological pH. On the basis of results obtained by native PAGE electrophoresis, circular dichroism, and UV-melting experiments, we report here that truncated sequences of human telomere (d-GGGTTAGGG; GM9, d-AGGGTTAGGG; GM10, d-TAGGGTTAGGG; GM11) adopt a varied range of quadruplex conformations as a function of the cation present. By correlating CD and gel electrophoresis experiments; it was concluded that the GM9 oligonucleotide can self-associate to form a tetramer quadruplex (antiparallel; AP) in Na+ solution and a mixture of G-triplex (AP) or tri-G-quadruplex (parallel; P) along with a tetramer G-quadruplex structure (AP) in K+. The GM10 oligonucleotide formed a bimolecular G-quadruplex in both Na+ and K+ solutions, while GM11 associated to form a bimolecular G-quadruplex (AP) structure in Na+ solution and a mixture of bimolecular G-quadruplex (AP) and bimolecular G-quadruplex (P) along with parallel G-triplex or antiparallel tri-G-quadruplex in K+. All the UV-melting profiles, thermal difference spectra, and CD melting curves suggested the formation of a variety of G-quadruplex conformations by the DNA sequences studied in Na+ and K+ ions. Hypothetical models for different conformations adopted by these DNA molecules have also been proposed, which may further enhance our knowledge about the divergent topologies of guanine quadruplexes.

European Biophysics Journal 2018, 47, 903–915

 

Structural Switch from Hairpin to Duplex/Antiparallel G-Quadruplex at Single-Nucleotide Polymorphism (SNP) Site of Human Apolipoprotein E (APOE) Gene Coding Region

Swati Chaudhary, Mahima Kaushik, Saami Ahmed, Ritushree Kukreti, Shrikant Kukreti

  Abstract

A gradual dementia, which leads to the loss of memory and intellectual abilities, is the main characteristics of Alzheimer’s disease. Amyloid-β (Aβ) plaques are the main components that accumulate and form clumps in the brains of people suffering from Alzheimer’s disease. Apolipoprotein E (APOE), an amyloid-binding protein is considered as one of the main genetic risk factor of the late-onset Alzheimer’s disease. Different isoforms of APOE gene named APOE2, APOE3, and APOE4 are known to exist, which differ from each other at certain positions involving single-nucleotide polymorphisms (SNPs). Out of these isoforms, APOE4 increases the risk of developing late-onset Alzheimer’s disease, whereas APOE3 is the most common among the general population. APOE4 differs from the common APOE3 by only one nucleotide at position +2985 (T to C), which results in immense alteration in the structure and function of the APOE gene. A combination of gel electrophoresis (polyacrylamide gel electrophoresis, PAGE), circular dichroism (CD), CD melting, thermal difference spectra and UV-thermal denaturation (TM) techniques was used to investigate the structural polymorphism associated with T → C single-nucleotide polymorphism (SNP) at the GC-rich sequence (d-TGGAGGACGTGTGCGGCCGCCT; APOE22T). Herein, we report that APOE22T DNA sequence switches between hairpin to antiparallel quadruplex from low to high oligomer concentration. On the contrary, its C-counterpart (APOE22C) forms hairpin as well as intermolecular antiparallel duplex structure. This structural change may possibly contribute to the protein recognition pattern, which, in turn, might control the APOE gene expression.

ACS Omega 2018, 3, 3, 3173–3182 Read More

Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors

Saami Ahmed, Mahima Kaushik, Swati Chaudhary, Shrikant Kukreti

  Abstract

Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5′-TCCCCCAATTAATTCCCCCA-3′; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors.

International Journal of Biological Macromolecules 2018, 111, 455-461.

 

Structural switch from a multistranded G-quadruplex to single strands as a consequence of point mutation in the promoter of the human GRIN1 gene

Swati Chaudhary, Mahima Kaushik, Ritushree Kukreti, Shrikant Kukreti

  Abstract

A huge number of G-rich sequences forming quadruplexes are found in the human genome, especially in telomeric regions, UTRs, and the promoter regions of a number of genes. One such gene is GRIN1 encoding the NR1 subunit of the N-methyl-D-aspartate receptor (NMDA). Several lines of reports have implicated that attenuated function of NMDA results in schizophrenia, a genetic disorder characterized by hallucinations, delusions, and psychosis. Involvement of the GRIN1 gene in the pathogenesis of schizophrenia has been extensively analysed. Recent reports have demonstrated that polymorphism in the promoter region of GRIN1 at position −855 (G/C) has a possible association with schizophrenia. The binding site for the NF-κB transcription factor gets altered due to this mutation, resulting in reduced gene expression as well as NMDA activity. By combining gel electrophoresis (PAGE), circular dichroism (CD) and CD melting techniques, the G → C single nucleotide polymorphism (SNP) at the G-rich sequence (d-CTTAGCCCGAGGA[G with combining low line]GGGGGTCCCAAGT; GRIN1) was investigated. We report that the GRIN1 sequence can form an octameric/multistranded quadruplex structure with parallel conformation in the presence of K+ as well as Na+. CD and gel studies are in good correlation in order to detect molecularity and strand conformation. The parallel G-quadruplex species was hypothesized to be octameric in K+/Na+ salts. The mutated sequence (d-CTTAGCCCGAGGA[C with combining low line]GGGGGTCCCAAGT; GRIN1M) remained single stranded under physiological conditions. CD melting studies support the formation of an interstranded G-quadruplex structure by the GRIN1 sequence. Two structural models are propounded for a multistranded parallel G-quadruplex conformation which might be responsible for regulating the gene expression normally underlying memory and learning.

Mol. BioSyst., 2017,13, 1805-1816

Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH

Sarika Saxena, Savita Joshi, J Shankaraswamy, Shikhar Tyagi, Shrikant Kukreti

  Abstract

Most of the important genomic regions, especially the G,C rich gene promoters, consist of sequences with potential to form G,C-tetraplexes on both the DNA strands. In this study, we used three C-rich oligonucleotides (11Py, 21Py, and HTPy), of which 11Py and 21Py are located at various transcriptional regulatory elements of the human genome while HTPy sequence is a C-rich strand of human telomere sequence. These C-rich oligonucleotides formed i-motif structures, verified by Circular Dichroism (CD), UV absorption melting experiments, and native gel electrophoresis. The CD spectra revealed that 11Py and 21Py form i-motif structures at acidic pH values of 4.5 and 5.7 in the presence of 100 mM NaCl but remain unstructured at pH 7.0. However, 21Py can form stable i-motif structure even at neutral pH in presence of 1 mM MgCl2 . UV-thermal melting studies showed stabilization of 21Py i-motif at pH 5.7 in the presence of Na+ or K+ with increasing concentration of MgCl2 or CaCl2 from 1 to 10 mM. Significant shift in the CD peak of HTPy sequence was observed as the positive peak from 286 nm shifted to 276 nm while the negative peak from 265 to 254 nm. Further, inevitable necessity of 1 mM Mg2+ to form i-motif structure at neutral pH was observed. Under similar ionic conditions and neutral pH, all the three C-rich sequences were able to form stable i-motif structures (11Py, 21Py) or altered i-motif/homoduplex structures (HTPy) in the presence of MgCl2 and cell mimicking molecular crowding conditions of 40 wt% PEG 200. It is concluded that presence of Mg2+ ions and molecular crowding agents induce and stabilize i-motif structures at physiological solution environment

Biopolymers 2017, 107 (7) e23018

A bouquet of DNA structures: Emerging diversity

Mahima Kaushik, Shikha Kaushik, Kapil Roy, Anju Singh, Swati Mahendru, Mohan Kumar, Swati Chaudhary, Saami Ahmed, Shrikant Kukreti

  Abstract

Structural polymorphism of DNA has constantly been evolving from the time of illustration of the double helical model of DNA by Watson and Crick. A variety of non-canonical DNA structures have constantly been documented across the globe. DNA attracted worldwide attention as a carrier of genetic information. In addition to the classical Watson-Crick duplex, DNA can actually adopt diverse structures during its active participation in cellular processes like replication, transcription, recombination and repair. Structures like hairpin, cruciform, triplex, G-triplex, quadruplex, i-motif and other alternative non-canonical DNA structures have been studied at length and have also shown their in vivo occurrence. This review mainly focuses on non-canonical structures adopted by DNA oligonucleotides which have certain prerequisites for their formation in terms of sequence, its length, number and orientation of strands along with varied solution conditions. This conformational polymorphism of DNA might be the basis of different functional properties of a specific set of DNA sequences, further giving some insights for various extremely complicated biological phenomena. Many of these structures have already shown their linkages with diseases like cancer and genetic disorders, hence making them an extremely striking target for structure-specific drug designing and therapeutic applications.

Biochem Biophys Rep.  2016, 5:388-395. doi: 10.1016/j.bbrep.2016.01.013.

Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster

Mahima Kaushik, Shrikant Kukreti

  Abstract

Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A → G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin → duplex equilibrium corresponding to A → B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A → G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5′-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A → B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5′-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein-DNA recognition patterns.

J Biomol Struct Dyn. 2015;33(2):244-52. doi: 10.1080/07391102.2013.877402.

A short GC-rich palindrome of human mannose receptor gene coding region displays a conformational switch

Aparna Bansal, Manoj Prasad, Kapil Roy, Shrikant Kukreti

  Abstract

Conformational switching in DNA is fundamental to biological processes. The structural status of a palindromic GC-rich dodecamer DNA sequence, integral part of human MRC2 coding region, and a related sequence of opposite polarity from human FDX1 gene were characterized and compared. UV-melting, circular dichroism, and gel electrophoresis experiments demonstrated the formation of intermolecular structures. Although stability and molecularity of both the oligomeric structures were found to be almost identical, their secondary structures differed remarkably as A1 MRC2 sequence showed A-like and B-like DNA conformation, whereas the A2 FDX1 sequence exhibited only the A-like signatures. The study is relevant for understanding structural polymorphism at genomic locations depending on DNA sequence and solution environment.

Biopolymers 2012, 97,950-62

Structural diversity and specific recognition of four stranded G-quadruplex DNA

M Kaushik, S Kaushik, A Bansal, S Saxena, S Kukreti

  Abstract

Structural multitude of nucleic acids serves basis for its multiple merits and applications. During structural transitions, significant to perform respective cellular functions, these DNA forms can vary from the single stranded to multi-stranded species. Hence, beyond the image of a monotonous DNA double-helix, there is now increasing interest in other polymorphic/ multi-stranded forms, the roles they may play in vivo and their potential use in therapeutics. Distinct guanine-rich nucleic acid sequences readily form a structurally diverse four-stranded architecture called G-quadruplexes. In addition to their presence at physical ends of chromosomes called telomeres, occurrence of these structural motifs in the upstream promoter regions of a number of genes, oncogenes and near transcription start sites, highlights that G-quadruplexes are involved in regulation of gene expression. Cancer cells typically possess shorter telomeres and have telomerase activity greatly exceeding that of normal cells. These differences create an opportunity to use anticancer therapies targeting telomerase and telomeres. The ability of small molecules to interact with and presumably stabilize G-quadruplex structures as a means of inhibiting telomerase has been a major drug design effort. Ligands, capable of interacting with four-stranded G-quadruplex have been generated. The discovery of proteins including transcription factors, recognizing G-quadruplexes, and conferring stabilization or unfolding them in biological systems, again makes G-quadruplexes, biologically pertinent structures. This review is an attempt to summarize the rapidly evolving literature exploring the amazing polymorphism of G-quadruplexes, and understanding their structure-specific-recognition and biological relevance, keeping in mind that G-tetraplexes are not only important drug targets, but may also act as gene regulatory elements. A pertinent detail of the challenges towards the rational design of structure-specific novel drugs has also been discussed.

Current Molecular Medicine 2011, 11, 744-69

Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target

Shikha Kaushik, Mahima Kaushik, Fedor Svinarchuk, Claude Malvy, Serge Fermandjian, Shrikant Kukreti

  Abstract

Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine•pyrimidine (Pu•Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))•(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5′-C(2)TC(5)TC(2)-3′, an oligonucleotide complementary to the 3′-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu•Py sequences may be pertinent to gene regulation.

Biochemistry 2011, 50, 19, 4132–4142

Structural polymorphism at LCR and its role in beta-globin gene regulation

Shrikant Kukreti*, Harpreet Kaur, Mahima Kaushik, Aparna Bansal, Sarika Saxena, Shikha Kaushik, Ritushree Kukreti

  Abstract

Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus

Biochimie 2010, 92(9), 1199-1206

Structural polymorphism exhibited by a homopurine.homopyrimidine sequence found at the right end of human c-jun protooncogene

Sarika Saxena, Aparna Bansal, Shrikant Kukreti

  Abstract

Homopurine.homopyrimidine (Pu.Py) tracts are likely to play important biological role in eukaryotes. Using circular dichroism, UV-thermal denaturation and gel electrophoresis, we have analyzed the structural polymorphism of a 21-bp Pu.Py DNA segment within human c-jun protooncogene 3′-region, a potential target for triplex formation. Results show that below physiological pH and in the presence of Na+/K+ with Mg2+ the duplex is destabilized/disproportionated, resulting in strand mediated structural transitions to the self-associated structures of G- and C-rich strands separately, identified as G-quadruplex and i-motif species. A significant differential behavior of the monovalent cations was observed, accordingly the presence of Na+ in acidic as well as neutral pH facilitated the duplex formation, while K+ favored the formation of self-associated structures. In Na+ and Mg2+, under acidic and neutral pH conditions, the duplex displayed triphasic and biphasic melting profiles, respectively. This self-association property of oligonucleotides might limit their use as duplex targets in triplex formation. Study is also relevant for understanding structural and biological properties of DNA sequence containing homopurine tracts.

Arch. Biochemistry Biophysics. 2008, 47, 95-108

Possibility of an antiparallel (tetramer) quadruplex exhibited by the double repeat of the human telomere

Mahima Kaushik, Aparna Bansal, Sarika Saxena, Shrikant Kukreti

  Abstract

Under physiological concentrations of Na+ and K+, human telomeric DNA can self-associate into G-quadruplexes. On the basis of circular dichroism, gel electrophoresis, gel filtration, and UV-melting experiments, we report here that the double repeat of human telomere (d-TTAGGGTTAGGG; HUM2) forms parallel as well as antiparallel quadruplexes in the presence of K+, whereas Na+ facilitates only the antiparallel form. Here, the gel techniques and CD studies have proved to be complementary in detecting the molecularity and pattern of strand orientation. By correlating the gel and CD experiments, the antiparallel G-quadruplex was identified as a tetrameric species, whereas the parallel G-quadruplex was found to be dimeric. Both structural species were separated through gel filtration, which when run on native polyacrylamide gel electrphoresis (PAGE), confirmed their molecularity. UV-melting profiles also confirm the presence of two biphasic and one monophasic structural species in the presence of K+ and Na+, respectively. Though our observation is consistent with the recent NMR report (Phan, A. T., and Patel, D. J. (2003) J. Am. Chem. Soc. 125, 15021-15027), it seems to differ in terms of the molecularity of the antiparallel quadruplex. A model is proposed for an antiparallel tetrameric quadruplex, showing the possibility of Watson-Crick hydrogen bonds between intervening bases on antiparallel strands. This article expands the known structural motifs of DNA quadruplexes. To the best of our knowledge, four-stranded antiparallel quadruplexes have not been characterized to date. On the basis of the model, we hypothesize a possible mechanism for telomere-telomere association involving their G-overhangs, during certain stages of the cell cycle. The knowledge of peculiar geometries of the G-quadruplexes may also have implications for its specific recognition by ligands.

Biochemistry 2007, 46, 7119 – 7131

Structural polymorphism exhibited by a quasipalindrome present in the locus control region (LCR) of the human beta-globin gene cluster

Mahima Kaushik, Shrikant Kukreti

  Abstract

Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of beta-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A –> B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.

Nucleic Acids Research 2006, 34 (12), 3511–3522

Hairpin-duplex equilibrium reflected in the A-->B transition in an undecamer quasi-palindrome present in the locus control region of the human beta-globin gene cluster

Mahima Kaushik, Ritushree Kukreti, Deepak Grover, Samir K Brahmachari, Shrikant Kukreti

  Abstract

Our recent work on an A–>G single nucleotide polymorphism (SNP) at the quasi-palindromic sequence d(TGGGG[A/G]CCCCA) of HS4 of the human beta-globin locus control region in an Indian population showed a significant association between the G allele and the occurrence of beta-thalassemia. Using UV-thermal denaturation, gel assay, circular dichroism (CD) and nuclease digestion experiments we have demonstrated that the undecamer quasi- palindromic sequence d(TGGGGACCCCA) (HPA11) and its reported polymorphic (SNP) version d(TGG GGGCCCCA) (HPG11) exist in hairpin-duplex equilibria. The biphasic nature of the melting profiles for both the oligonucleotides persisted at low as well as high salt concentrations. The HPG11 hairpin showed a higher T(m) than HPA11. The presence of unimolecular and bimolecular species was also shown by non-denaturating gel electrophoresis experiments. The CD spectra of both oligonucleotides showed features of the A- as well as B-type conformations and, moreover, exhibited a concentration dependence. The disappearance of the 265 nm positive CD signal in an oligomer concentration-dependent manner is indicative of an A–>B transition. The results give unprecedented insight into the in vitro structure of the quasi-palindromic sequence and provide the first report in which a hairpin-duplex equilibrium has been correlated with an A–>B interconversion of DNA. The nuclease-dependent degradation suggests that HPG11 is more resistant to nuclease than HPA11. Multiple sequence alignment of the HS4 region of the beta-globin gene cluster from different organisms revealed that this quasi-palindromic stretch is unique to Homo sapiens. We propose that quasi-palindromic sequences may form stable mini- hairpins or cruciforms in the HS4 region and might play a role in regulating beta-globin gene expression by affecting the binding of transcription factors.

Nucleic Acids Research 2003, 31 (23), 6904-6915

Triple helices formed at oligopyrimidine*oligopurine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity

S Kukreti, J S Sun, D Loakes, D M Brown, C H Nguyen, E Bisagni, T Garestier, C Helene

  Abstract

Oligonucleotide-directed triple helix formation is mostly restricted to oligopyrimidine*oligopurine sequences of double helical DNA. An interruption of one or two pyrimidines in the oligopurine target strand leads to a strong triplex destabilisation. We have investigated the effect of nucleotide analogues introduced in the third strand at the site opposite the base pair inversion(s). We show that a 3-nitropyrrole derivative (M) discriminates G*C from C*G, A*T and T*A in the presence of a triplex-specific ligand (a benzo[e]pyridoindole derivative, BePI). N6-methoxy-2,6-diaminopurine (K) binds to an A*T base pair better than a T*A, G*C or C*G base pair. Some discrimination is still observed in the presence of BePI and triplex stability is markedly increased. These findings should help in designing BePI-oligonucleotide conjugates to extend the range of DNA sequences available for triplex formation.

Nucleic Acids Research 1998, 26, 2179 – 2184

Rational design of a triple helix-specific intercalating ligand

C Escudé, C H Nguyen, S Kukreti, Y Janin, J S Sun, E Bisagni, T Garestier, C Hélène 

  Abstract

DNA triple helices offer new perspectives toward oligonucleotide-directed gene regulation. However, the poor stability of some of these structures might limit their use under physiological conditions. Specific ligands can intercalate into DNA triple helices and stabilize them. Molecular modeling and thermal denaturation experiments suggest that benzo[f]pyrido[3, 4-b]quinoxaline derivatives intercalate into triple helices by stacking preferentially with the Hoogsteen-paired bases. Based on this model, it was predicted that a benzo[f]quino[3,4-b]quinoxaline derivative, which possesses an additional aromatic ring, could engage additional stacking interactions with the pyrimidine strand of the Watson-Crick double helix upon binding of this pentacyclic ligand to a triplex structure. This compound was synthesized. Thermal denaturation experiments and inhibition of restriction enzyme cleavage show that this new compound can indeed stabilize triple helices with great efficiency and specificity and/or induce triple helix formation under physiological conditions.

Proceedings of the National Academy of Sciences (USA) 1998, 95, 3591 – 3596

Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides

S Kukreti, J S Sun, T Garestier, C Hélène

  Abstract

Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3′-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3′-side or a guanine with an acridine at its 5′-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.

Nucleic Acids Research 1997, 25, 4264 – 4270

Hairpin and duplex forms of a self-complementary dodecamer, d-AGATCTAGATCT, and interaction of the duplex form with the peptide KGWGK: can a pentapeptide destabilize DNA?

K B Roy, S Kukreti, H S Bose, V S Chauhan, M R Rajeswari  

  Abstract

Ordered forms of a synthetic dodecamer, d-AGATCTAGATCT, a direct repeat of the BglII recognition sequence, have been investigated using UV, CD, and fluorescence spectroscopy. Complex hairpin-duplex equilibria are manifest in UV thermal transitions, which are monophasic in the presence of very low or high NaCl concentrations but distinctly biphasic at intermediate ionic strengths. In 100 mM NaCl, the 1/Tm vs 1n C curve has a reasonable positive slope, which yields delta H and delta S for duplex formation as -66.2 kcal/mol and -190 cal/mol, respectively. Interaction of the dodecamer in duplex form with a tryptophan-containing peptide, KGWGK, has also been investigated to test the “bookmark” hypothesis (Gabbay et al., 1976) under the uniform structural constraint of the oligonucleotide of defined sequence.

CD spectra of the peptide (P), the oligonucleotide (N), and their mixtures at different P/N ratios show a dramatic change in peptide spectrum but little change in nucleic acid dichroism with peptide binding. The Tm of P-N complexes decreases with an increase in peptide binding and levels off at saturation binding of P/N = 2.0. The data are interpreted in terms of a groove-cum-intercalation mode of binding, where intercalation to the tryptophan side chain destabilizes the double helix. A Scatchard plot of the binding data is nonlinear, with best-fit values for an overall association constant K = 4.33 x 10(5) M-1, and the number of binding sites n = 3.23 when fitted to the site-exclusion model of binding.

Biochemistry 1992, 31, 6241 – 6245

Binding of oligopeptides to d-AGATCTAGATCT and d-AAGCTTAAGCTT: can tryptophan intercalate in DNA hairpins?

M R Rajeswari, H S Bose, S Kukreti, A Gupta, V S Chauhan, K B Roy

  Abstract

The interactions of three tryptophan-containing peptides, KWK, KGWK tert-butyl ester, and KGWGK, with two self-complementary dodecamers of the same base composition but different sequence were studied by UV, CD, and fluorescence spectroscopy. The oligonucleotides, d-AGATCTAGATCT and d-AAGCTTAAGCTT, contain tandem repeats of the recognition site for the restriction enzyme BglII in the former and HindIII in the latter. Thermal transition data in dilute solutions and in 0.01 M NaCl indicate these dodecamers to be present in hairpin forms. Binding of peptides to these hairpins was followed by tryptophan fluorescence quenching titrations at 10 mM Na+; the data suggest intercalation of the indole ring. The association constants for the peptide-oligonucleotide (PN) complexes are an order of magnitude higher (10(5) M) than those reported with polynucleotides [10(4) M; Rajeswari et al. (1987) Biochemistry 26, 6825]. The pentapeptide, KGWGK, discriminates between BglII and HindIII sequences with higher affinity for the HindIII dodecamer. The CD maximum of KGWGK, at 220 nm, is drastically diminished upon interaction with oligonucleotides. The ellipticity at 220 nm is halved at 10 times less P/N ratio with the HindIII dodecamer than the BglII dodecamer, suggesting stronger binding to the HindIII dodecamer. The results are discussed in terms of two different modes of binding of oligopeptides to the DNA hairpins.

Biochemistry 1992, 31, 6237 – 6241

A 500 MHz proton NMR study of stacking interactions: binding of tripeptide Lys-Tyr-Lys to tetradeoxynucleotide d-GpCpGpC

R Barthwal, A Mujeeb, S Kukreti, A Gupta, G Govil 

  Abstract

The complete sequential assignment and conformation of d-GpCpGpC in D2O has been determined from 1D NMR spectra at 285-320 K and room temperature 2D-COSY and NOESY spectra. The tetradeoxynucleotide exists primarily as a right handed double helix at 285 K, having Tm as 314 K. On binding to a tripeptide Lys-Tyr-Lys in a concentration equimolar to tetranucleotide duplex, the Tyr ring protons shift upfield by 0.14 ppm at 285 K. The increase in Tm on binding suggests stabilization of duplex. The existence of intermolecular NOEs between C4 sugar protons and Tyr alpha C and Lys alpha C protons give direct evidence of proximity of Tyr residue to the C4 base of d-GpCpGpC. The conformation of d-GpCpGpC remains unchanged on binding. The observed results are interpreted in terms of preferential stacking of aromatic ring of Tyr residue with proximal base-pair of d-GpCpGpC, stabilized by electrostatic interaction of Lysine side chains with backbone phosphates. This is in contrast to intercalculation of aromatic dyes within base-pairs resulting in a change in sugar conformation at the binding site.

Journal of Molecular Recognition 1991, 4, 45 – 52

Scroll to Top